Τρίτη, 25 Οκτωβρίου 2016

Βασικές Γεωμετρικές έννοιες Α Γυμνασίου- Βασικά στοιχεία κεφαλαίου

Στην παρούσα ανάρτηση, παρουσιάζω μια πρόταση μου για ένα ανακεφαλαιωτικό μάθημα στις βασικές γεωμετρικές έννοιες της Α' Γυμνασίου.

Τα παιδιά της Α' Γυμνασίου σε πολλές περιπτώσεις αδυνατούν να πειστούν να χρησιμοποιήσουν μολύβι, χαρτί και γεωμετρικά όργανα σχεδιάζοντας σχήματα σε βασικές γεωμετρικές έννοιες. Άλλες πάλι φορές κάνουν πρόχειρα σχέδια, είτε δεν ονομάζουν τα σχήματα.

Οπότε, κατά την άποψή μου, είναι καλό, μετά την παράδοση δυο-τριών μαθημάτων (που μπορεί να είναι μετά από 4 ή 5 διδακτικές ώρες ( δεν θα είναι σε όλο το κεφάλαιο αλλά τμηματικά), να παρουσιάζουμε το αρχείο αυτό και κυκλοφορώντας εμείς μέσα στην τάξη, να τους ωθούμε να συμμετέχουν ενεργά, αφού τα σχέδια παρουσιάζονται τμηματικά στο αρχείο prezi που παραθέτω.

Αυτό, έκανα εγώ την φετινή χρονιά και θα συνεχίσω να το κάνω στο υπόλοιπο κεφάλαιο. Το αρχείο δεν είναι ολοκληρωμένο και θα ανανεωθεί με τις επόμενες παραγράφους.

Ανάλογη εργασία κάνω στην γεωμετρία της Β' Γυμνασίου, την οποία επίσης θα παρουσιάσω σε άλλη ανάρτηση. Χρησιμοποίησα και κάποια τμήματα από βιντεομαθήματα του Ευριπίδη Θέμελη, τον οποίο φυσικά ενημέρωσα.

Κυριακή, 17 Απριλίου 2016

Ασφάλεια στο διαδίκτυο - Κρυπτογραφία και παιγνίδια

Με τους μαθητές μου της Α' Γυμνασίου εργαστήκαμε την χρονιά που διανύουμε σε ένα "δύσκολο" θέμα που αφορά την Κρυπτογραφία. Λέω ότι είναι δύσκολο μια και τα παιδιά δεν διδάσκονται θεωρία αριθμών (βασικό στοιχείο της Κρυπτογραφίας) ούτε καν στο Λύκειο.

Παρ'όλα αυτά θεωρώ ότι καταφέραμε να προσεγγίσουμε το θέμα, χρησιμοποιώντας δύο βασικά στοιχεία: Ιστορικά στοιχεία που αφορούν την Κρυπτογραφία αλλά πολύ περισσότερο παιγνίδια (από τα παίγνια) που έχουν να κάνουν με αριθμούς και με τα οποία κρατήθηκε το ενδιαφέρον των μαθητών μου.

Την εργασία αυτή την παρουσιάσαμε κατά την διάρκεια της 8ης Μαθηματικής εβδομάδας στην Θεσσαλονίκη (την 1η Απριλίου 2016) και στην Καστοριά (στις 17 Απριλίου 2016) μαζί με τους μαθητές. (Η παρουσίαση εντάσσεται στο γενικότερο πλαίσιο, όπως περιγράφω σε προηγούμενη ανάρτηση, ομιλιών, με γενικό τίτλο: "Ας μιλήσουμε για Μαθηματικά, ας μιλήσουμε για Πολιτισμό" μαζί με τον πολιτιστικό σύλλογο Καστοριάς "Αθανάσιος Χριστόπουλος").

Ελπίζω, να δώσει το ξεκίνημα αυτό, ώθηση για να προσεγγίσουμε το θέμα, πιθανόν, την επόμενη χρονιά με περισσότερα στοιχεία της Κρυπτογραφίας και φυσικά ελπίζουμε και άλλοι να χαρούν και να παίξουν με τα πολλά παιγνίδια που παραθέτουμε στο τελευταίο μέρος της παρουσίασης. Στην Θεσσαλονίκη είχαμε την χαρά να δούμε τους μαθητές από 2-3 Σχολεία να συμμετέχουν ενεργά και να χαίρονται το παιγνίδι!

Τετάρτη, 30 Μαρτίου 2016

“Παγκόσμια ημέρα του π! Το π είναι παντού, στους κύκλους, στους ποταμούς, στις πίτες...”


Στα πλαίσια των ποικίλων πολιτιστικών δραστηριοτήτων του συλλόγου “Αθανάσιος Χριστόπουλος” που δραστηριοποιείται στην Καστοριά θα πραγματοποιήσω ομιλίες-παρουσιάσεις με γενικό τίτλο:

“Ας μιλήσουμε για Μαθηματικά, ας μιλήσουμε για Πολιτισμό.”

Η σειρά αυτή θα περιλαμβάνει ομιλίες-παρουσιάσεις σε θέματα Μαθηματικών, εκλαΐκευσης αυτών, ιστορίας και σύνδεσής τους με θέματα της φύσης και της ζωής. Η διάρκεια της κάθε ομιλίας-παρουσίασης θα είναι περίπου 25-40 λεπτά η κάθε μία και απευθύνεται σε όλους τους ενδιαφερόμενους (μέλη ή μη του συλλόγου), μαθητές και γονείς τους και με προτεινόμενη ηλικιακά κατηγορία από 10 χρονών και πάνω, με μηδενικές έως ελάχιστες γνώσεις στα Μαθηματικά.

Τίτλος 1ης παρουσίασης:

“Παγκόσμια ημέρα του π! Το π είναι παντού, στους κύκλους, στους ποταμούς, στις πίτες...”


Η πρώτη πραγματοποιήθηκε στις 20/03/2016.
Μπορείτε να δείτε την παρουσίασή μου παρακάτω:

Τετάρτη, 10 Φεβρουαρίου 2016

Εισαγωγικό μάθημα στις δευτεροβάθμιες εξισώσεις Γ Γυμνασίου

Ένα μικρό εισαγωγικό μάθημα στις δευτεροβάθμιες εξισώσεις για την Γ' Γυμνασίου.

Αρχικά έδωσα φύλλο εργασίας με τα δύο προβλήματα που θα δείτε και στην συνέχεια αφού τα παιδιά ασχολήθηκαν περίπου 10 λεπτά, τμηματικά και βήμα βήμα παρουσίασα με το αρχείο prezi  τα βήματα που οδηγούσαν στην λύση με τα παιδιά να συμμετέχουν στα φύλλα εργασίας τους σε ότι δεν ολοκλήρωσαν.

Σάββατο, 31 Οκτωβρίου 2015

Παρουσίαση στο 32ο Πανελλήνιο συνέδριο Μαθηματικών στην Καστοριά!


Η εργασία μου και η παρουσίασή της στο 32ο Πανελλήνιο συνέδριο Μαθηματικών στην Καστοριά με θέμα από τον Πλάτωνα στον Euler με τα φουλερένια και την μπάλα του Μαρακανά!

Γιατί... η μπάλα ήταν στο γήπεδό μας!


Σάββατο, 17 Οκτωβρίου 2015

32o Πανελλήνιο Συνέδριο Μαθηματικών στην Καστοριά!


Καθώς οι ημέρες περνούν και είμαστε στο μήνα που θα πραγματοποιηθεί το Πανελλήνιο συνέδριο Μαθηματικών στην Καστοριά, θέλω να χαιρετήσω τους συναδέλφους που δρομολόγησαν τον ερχομό τους στην Καστοριά και να προσκαλέσω σαν Καστοριανός (μια και υπηρετώ σε Σχολεία της Καστοριάς αν και η καταγωγή μου δεν είναι από την Καστοριά), όσους περισσότερους φίλους μπορούν να την επισκεφθούν.

Η Καστοριά είναι, όπως πάντα, πανέμορφη και είμαι σίγουρος ότι όσοι συνάδελφοι και μη βρεθούν κοντά μας, θα περάσουν τις ημέρες του συνεδρίου πολύ όμορφα. 
Θα γνωρίσουν αυτό τον πανέμορφο και φιλόξενο τόπο παρακολουθώντας τις εισηγήσεις που έχουν συμπεριληφθεί. Φυσικά η χαρά μου είναι μεγάλη που θα ξαναδώ φίλους απ'όλη την Ελλάδα και πιστεύω ότι θα γνωρίσω πολλούς καινούριους:

Παρακάτω μπορείτε να δείτε τις δύο αφίσες του συνεδρίου όπως δημοσιεύτηκαν και στο αντίστοιχο blog όπου μπορείτε να τις δείτε σε υψηλότερη ανάλυση.


Καλή αντάμωση!




Τρίτη, 16 Ιουνίου 2015

Παρουσίαση εργασίας " Δρόμοι αριθμών, δρόμοι πολιτισμών"

Οι μαθητές μου, των Α' και Β' τάξεων του γυμνασίου Μαυροχωρίου, παρουσίασαν την εργασία τους με τίτλο " Δρόμοι αριθμών, δρόμοι πολιτισμών".

Η παρουσίαση έγινε τόσο στην διάρκεια της 7ης Μαθηματικής Εβδομάδας, τον Μάρτιο του 2015, όσο και στην βράβευση των μαθητών της Ε' και ΣΤ' τάξεων δημοτικών σχολείων, οι οποίοι διακρίθηκαν στο διαγωνισμό "Μαθηματικά και Παιχνίδι".

Η βράβευση πραγματοποιήθηκε την Πέμπτη 11 Ιουνίου 2015 στο ΤΕΙ Καστοριάς.

Η παρουσίαση έγινε με το λογισμικό prezi και μπορείτε να την δείτε παρακάτω

Σάββατο, 13 Δεκεμβρίου 2014

Σενάριο για την προσέγγιση κύκλου με κανονικά πολύγωνα


Παρακάτω παρουσιάζω ένα σενάριο περίπου 6 διδακτικών ωρών για την προσέγγιση κύκλου με κανονικά πολύγωνα για την Β' Λυκείου.
Σαν εισαγωγική δραστηριότητα προτείνω να γίνει μια εκδοχή του τρόπου υπολογισμού εμβαδού κυκλικού δίσκου από τους Αιγυπτίους.
Περιλαμβάνεται το σενάριο, τέσσερα φύλλα εργασίας και οκτώ αρχεία geogebra. Στο σενάριο ζητείται και μια εφαρμογή του χελωνόκοσμου.
Το σενάριο, 1ο φύλλο εργασίας, 2ο φύλλο εργασίας, 3ο φύλλο εργασίας, 4ο φύλλο εργασίας, Αιγύπτιοι_κύκλος, Εμβαδό_κυκλ_δίσκου_ξετίλυγμα, Μηνίσκος_Ιπποκράτη, Άρβηλος_Αρχιμήδη, Μήκος_κύκλου_ξετίλυγμα, Μηνίσκοι_Ιπποκράτη, Τετραγωνισμός_Μηνίσκου, Προσεγγ_κυκλ_εμβ_καν_πολυγ_Αρχιμήδης

Σάββατο, 29 Νοεμβρίου 2014

Σενάριο για το Πυθαγόρειο Θεώρημα και το αντίστροφο - Β' Γυμνασίου

Στον παρακάτω σύνδεσμο μπορείτε να κατεβάσετε ένα σενάριο που αναφέρεται στο Πυθαγόρειο θεώρημα και το αντίστροφό του. Η αντίστοιχη παράγραφος είναι η 1.4 του σχολικού βιβλίου της Β' Γυμνασίου.
Στους συναδέλφους που θα πραγματοποιήσουν το σενάριο θα παρακαλούσα να μου στείλουν παρατηρήσεις και συμπεράσματα ώστε να βελτιωθεί!
Πατήστε αντίστοιχα για να κατεβάσετε το σενάριο, τα φύλλα εργασίας και τα αντίστοιχα αρχεία λογισμικού geogebra.
Σενάριο, Φύλλο εργασίας 1, Φύλλο εργασίας 2, Εισαγωγή_Πυθαγόρειο, Πυθαγόρειο_οπτική_αποδ, Ράφι, Πυθαγόρειο_Παζλ_για_διασκεδαση, Αποδ_Πυθαγορειου2

Κυριακή, 9 Νοεμβρίου 2014

Παρουσίαση στο 31ο Συνέδριο της ΕΜΕ στην Βέροια

Η παρουσίασή μου στο 31ο Συνέδριο της ΕΜΕ στην Βέροια.

Μπορείτε να την δείτε πατώντας πάνω στην εικόνα (θα σας μεταφέρει στην σελίδα του prezi, πατήστε καλύτερα μετά πλήρη οθόνη και με τα βελάκια του πληκτρολογίου σας μετακινηθείτε βήμα, βήμα).



Ολόκληρη την εργασία μου, μπορείτε να την κατεβάσετε από εδώ !

Το βασικό αρχείο geogebra 3D  μπορείτε να το κατεβάσετε από εδώ !

Τετάρτη, 30 Απριλίου 2014

Άθροισμα γωνιών τριγώνου - Α' Γυμνασίου

Κάναμε μια σημαντική παράγραφο στην ύλη της γεωμετρίας της Α' γυμνασίου. Η παράγραφος αυτή είναι το "Άθροισμα των γωνιών τριγώνου- Ιδιότητες ισοσκελούς τριγώνου" που ακολουθεί στο σχολικό βιβλίο τις παράλληλες ευθείες που τέμνονται από τρίτη ευθεία και τα είδη τριγώνων.

Είναι σημαντική, γιατί το σχολικό βιβλίο παρουσιάζει στο σημείο αυτό, μια δραστηριότητα εισαγωγική για την μέτρηση γωνιών σε τρίγωνα και έχει αρκετές εφαρμογές λυμένες που θα μπορούσαν να αποτελούν ασκήσεις, παρουσιάζοντας ακόμη σαν εφαρμογή και την απόδειξη του αθροίσματος των γωνιών τριγώνου.
Επιπρόσθετα οι μαθητές αρχίζουν να μυούνται στην αποδεικτική διαδικασία. Μπορούν να κάνουν εικασίες και κατά κάποιο τρόπο να τις επιβεβαιώνουν ή να τις απορρίπτουν.Οι πολλές όμως εφαρμογές που περιέχουν και αλγεβρικά σύμβολα, εξισώσεις και ταυτόχρονα σχήματα, λαμβάνοντας υπόψιν την μη κατάλληλη προετοιμασία (α) σε υλικά γνώμονες-χάρακες-μοιρογνωμόνια και (β) στην καλλιέργεια της υπομονής και επιμονής λύσης ενός γεωμετρικού προβλήματος, καθιστούν την παράγραφο κατά την άποψή μου, δύσκολη διδακτικά και πρόκληση για τον διδάσκοντα.
Νομίζω, ότι είναι σημαντική παράγραφος και για τον επιπλέον λόγο επιλογής θέματος εξετάσεων αρκετών συναδέλφων στις τελικές εξετάσεις της αντίστοιχης τάξης.

Παρουσιάζω, ένα φύλλο εργασίας και προτείνω να  υλοποιηθεί σε μια διδακτική ώρα ενώ σε μια δεύτερη, μπορούν να γίνουν οι ασκήσεις της αντίστοιχης παραγράφου. Επίσης δίνω και τα αντίστοιχα αρχεία geogebra, από εδώ!

Δευτέρα, 17 Μαρτίου 2014

Πρώτοι αριθμοί: Ομορφιά, μαγεία, κυνήγι με την τεχνολογία και μια αναπάντεχη παρουσία στην φύση !

Το πόσο σημαντικοί είναι οι πρώτοι αριθμοί, οι μαθηματικοί το γνωρίζουν. Ειδικά στην τεχνολογία και στην κρυπτογραφία, νομίζω ο  RSA και άλλοι κρυπτογραφικοί αλγόριθμοι που τους χρησιμοποιούν, τους καθιστούν "αόρατους" καθημερινούς μας επισκέπτες.

Το κυνήγι τους συνεχίζεται και σήμερα, πιθανόν να συνεχίζεται και για πάντα αφού κάθε τόσο μεγάλη πρόκληση προσφέρει την νοητική αθανασία. Χρησιμοποιείται πλέον σαν υπερόπλο και η δραστική αύξηση των υπολογιστικών συστημάτων και οι τεράστιες δυνατότητες των ηλεκτρονικών υπολογιστών όσο και των δικτύων. Η αναζήτηση ενός "κλειστού" τύπου που να τους υπολογίζει όλους (σε ρεαλιστικά υπολογιστικά χρόνο, χωρίς να είμαι σίγουρος αν η έκφραση είναι η ιδανικότερη), γνωρίζουμε ότι είναι δυστυχώς ή πιθανόν "λόγω (1)-ευτυχώς" ανέφικτη. Μια καλή προσέγγιση στο θέμα μπορείτε να βρείτε στην εργασία του συναδέλφου Αλέξανδρου Συγκελάκη.

Οι μεγαλύτεροι μαθηματικοί ασχολήθηκαν φυσικά μαζί τους. Ο Riemann,  πιθανόν, μετά τον Gauss έκανε τα σημαντικότερα βήματα, αναζητώντας τρόπο να προσεγγιστούν και χάρισε στους μαθηματικούς και μη, μια αναζήτηση που διαρκεί ακόμη και σήμερα. Ο Hilbert όταν ρωτήθηκε τι θα ήθελε να μάθει αν κοιμόταν και ξύπναγε μετά από 500 χρόνια, απάντησε ότι θα ήθελε να μάθει αν αποδείχθηκε η υπόθεση Riemann.

Τα παιδιά, ως γνωστό, τους πρωτογνωρίζουν από το δημοτικό αλλά καλύτερα στην Α' γυμνασίου. Μαθαίνουν ότι έχουν το χαρακτηριστικό γνώρισμα να διαιρούνται μόνο με τον εαυτό τους και την μονάδα. Το ένα δεν το παίρνουμε ως πρώτο αριθμό (αν και έχει την προηγούμενη ιδιότητα) και έτσι η λίστα μας πάει ως 2, 3, 5, 7, 11, 13, 17, 19, 23, ...
Η απόδειξή της απειρίας τους, μέσα από τα μάτια του Ευκλείδη μπορεί από νωρίς να συζητηθεί με τους μαθητές μας. Την καθιστούν, μια από τις "ομορφότερες" αποδείξεις. 

Θα σταθώ όμως στην ομορφιά και σε μια αναπάντεχη παρουσία τους στην φύση. Σε συζήτηση που είχα πρόσφατα με μαθητές μου και διαβάζοντας παράλληλα, τελευταία, το πολύ καλό βιβλίο "Τα μυστήρια των αριθμών" του Marcus du Sautoy, τους ρώτησα και εγώ αν ξέρουν ποιόν αριθμό φορούσε ο Μπέκαμ όταν πήρε μεταγραφή στην Ρεάλ Μαδρίτης. Μου είπαν το 23, μετά μου είπαν ότι ο Ρονάλντο ζήτησε το 7 αλλά το είχε ο Ραούλ και έτσι πήρε το 19 και έτσι.... συζητώντας ανακαλύψαμε τους πρώτους αριθμούς ποδοσφαιρικά και μη!
Στην συνέχεια, έχοντας κεντρίσει το ενδιαφέρον τους, είπα την εξής μικρή ιστορία.

Τους μίλησα για ένα είδος τζιτζικιών που ζει στην βόρεια Αμερική, το γένος Magicicada. Παρακάτω παραθέτω ένα βίντεο για αυτό το είδος με την ονομασία " The return of cicaidas". Παρακολουθώντας το, θα διαπιστώσετε ότι έχουν ένα σταθερό δεκαεπτάχρονο κύκλο ζωής. Η επιλογή του δεκαεπτάχρονου κύκλου ζωής τους επιστημονικά, έρχεται να δώσει η μαθηματική θεωρία σύμφωνα με την οποία τους δίνει την δυνατότητα επιβίωσής τους. Η ύπαρξη ενός αρπακτικού που εμφανίζεται στο δάσος περιοδικά, συγχρονίζοντας την άφιξή του με εκείνη των τζιτζικιών, μάλλον καθιστά την επιλογή των τελευταίων πολύ "έξυπνη". Τα τζιτζίκια μέσα από αυτή την επιλογή τους και του μεγάλου πλήθους τους, καταφέρνουν να επιβιώσουν. Στο σύνδεσμο του εκδοτικού οίκου "Τραυλός", του βιβλίου που προανέφερα, μπορείτε να παίξετε το παιχνίδι αρπαχτικά εναντίον τζιτζικιών, για να δείτε καλύτερα το κέρδος από την επιλογή τους.



Οι ιστοσελίδες και οι εργασίες για τους πρώτους αριθμούς είναι αμέτρητες. Εγώ, θα παραθέσω ως πηγή για όσους ενδιαφέρονται περισσότερο, την διπλωματική του συναδέλφου Πετρίδη Σαράντου.

Σάββατο, 15 Μαρτίου 2014

Παρουσίαση για την ημέρα του π!

Μια παρουσίαση, που έκανα για την ημέρα του π στα σχολεία μου!


 Την παρουσίαση σε pdf μπορείτε να την κατεβάσετε από εδώ!
Μαζί και ένα αρχείο geogebra  για την προσέγγιση του κύκλου μέσω κανονικών πολυγώνων (στην διαφάνεια με τον Αρχιμήδη).
Θα πρότεινα, σε όσους ενδιαφέρονται για την περισσότερο αναγνωρισμένη σταθερά παγκοσμίως, να διαβάσουνε την πολύ ενδιαφέρουσα διπλωματική εργασία, της συναδέλφου Αρώνης Παρασκευής. Μπορείτε να την κατεβάσετε από εδώ.

Δευτέρα, 10 Μαρτίου 2014

Εργασία για την Α' γυμνασίου

Όταν ολοκληρώσουμε τις παραγράφους 2.6 (παράλληλες ευθείες που τέμνονται από τρίτη και 6.3 ανάλογα ποσά του σχολικού βιβλίου) μπορούμε να δώσουμε στους μαθητές μας την εξής εργασία.

Να αναζητήσουν πληροφορίες για τον Ερατοσθένη. Τι είναι γνωστό για τον ίδιο; Με ποια σημαντικά θέματα ασχολήθηκε; Πως τα προσέγγισε; Βρήκε λύσεις και ποιες;

Μπορούμε να γίνουμε και περισσότερο συγκεκριμένοι για το τι θα αναζητήσουν τα παιδιά.
1ον : Ερατοσθένης και πρώτοι αριθμοί (μπορούμε να τους θυμίσουμε ότι έχει κάποια στοιχεία για το θέμα και το σχολικό βιβλίο, τα οποία πιθανόν να έχουμε αναφέρει και όταν διδάξαμε την σχετική παράγραφο).
2ον : Μέτρηση περιμέτρου γης. Πως συνδέεται με τις παραπάνω παραγράφους του σχολικού βιβλίου; Να κάνουν κάποιο σχέδιο οι μαθητές δίνοντας τις σχετικές πληροφορίες και διευκρινίσεις. Αν οι μαθητές δεν βρούνε κάποια καλή εικόνα που θα τους βοηθούσε να αντιληφθούν την σχέση αυτή μπορούμε να τους δώσουμε την παρακάτω :


   Η εξήγηση, καθώς και το πολύ όμορφο παραπάνω σχήμα, δίνονται εδώ από τον καλό μας συνάδελφο και πρώην σχολικό σύμβουλο Δυτικής Μακεδονίας (συνταξιούχο αλλά πάντα ενεργό) Κώστα Δόρτσιο !

Κυριακή, 9 Μαρτίου 2014

Συμμετρία για την Α' γυμνασίου και όχι μόνο.


Μάθημα συμμετρίας για την Α' γυμνασίου. Αρχικά, δίνεται ένα φύλλο δραστηριοτήτων (ένα για τον άξονα συμμετρίας και ένα για το κέντρο συμμετρίας, στο επόμενο μάθημα). Τα παιδιά χωρίζονται σε ομάδες εργασίας (3 ή 4 ατόμων και όχι μόνο για λόγους παιδαγωγικούς, αλλά για τον επιπρόσθετο λόγο ότι τα φύλλα εργασίας περιέχουν από 3 έως 4 δραστηριότητες. Σε κάθε μια, είναι καλό, διαφορετικός μαθητής να αναλαμβάνει κεντρικό ρόλο. Οι μαθητές πειραματίζονται ανοίγοντας τα αντίστοιχα αρχεία geogebra. Τα προτεινόμενα φύλλα εργασίας και τα αρχεία geogebra τα κατεβάζετε πατώντας παραπάνω στο μάθημα συμμετρίας.

Στους μαθητές, μπορούμε να δώσουμε και τα αντίστοιχα παιχνίδια (1, 2, 3, και 4) για να δείξουμε την δύναμη της συμμετρίας, ως σημαντικού στρατηγικού εργαλείου νίκης (θεωρία παιγνίων). Τα συγκεκριμένα παιχνίδια προτάθηκαν από τον Μιχάλη Λάμπρου, καθηγητή του μαθηματικού τμήματος στο πανεπιστήμιο Κρήτης, στο γνωστό πιστεύω πλέον σε όλους, ιστότοπο του mathematica.





Παράλληλα, είναι καλό να "παίξουμε" και με το γνωστό άθροισμα του μαθητή Gauss (1+2+3+...+100) γιατί, ουσιαστικά, αυτό που πάλι χρησιμοποιείται είναι η έννοια της συμμετρίας!

Αριθμοί δια μέσου των πολιτισμών

Μια παρουσίαση που έκανα μαζί με μαθητές του ΕΠΑΛ Άργους Ορεστικού και μαθητών της Α' τάξης γυμνασίου Πενταβρύσου.



Μπορείτε να την κατεβάσετε ολόκληρη από εδώ.
Μαζί και ένα αρχείο geogebra για τους τρίγωνους αριθμούς που δείξαμε στην παρουσίαση από εδώ!